๐Ÿ“ AI & Bigdata/AI & ML & DL

[AI] XAI, eXplanable AI์ด๋ž€

SOIT 2022. 8. 29. 16:25

์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์ธ๊ณต์ง€๋Šฅ: XAI

 

๋จธ์‹ ๋Ÿฌ๋‹: ์ปดํ“จํ„ฐ ๋น„์ „, ํšŒ๊ท€ ๋ถ„์„, ์‹œ๊ณ„์—ด ์˜ˆ์ธก, ๋ถ„๋ฅ˜, ์Œ์„ฑ ์ธ์‹, ๋ฌธ์ž ์ธ์‹ ์— ์‚ฌ์šฉ ๋˜์—ˆ๋‹ค.

ํ•˜์ง€๋งŒ ๋จธ์‹ ๋Ÿฌ๋‹, ๋ช‡๋ช‡ ๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ž‘๋™ ๋ฐฉ์‹์€ black box์™€๋„ ๊ฐ™๋‹ค. ์ด๋Š” ๋ชจ๋ธ์˜ ์ž…๋ ฅ๊ฐ’, ์ถœ๋ ฅ๊ฐ’ ์ด์™ธ์˜ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ์•Œ๊ธฐ ํž˜๋“ค๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฅ๋Ÿฌ๋‹์€ ํ•™์Šต ๋ฐฉ์‹์€ ๊ฐ„๋‹จํ•œ ๋ฏธ๋ถ„ ๊ณ„์‚ฐ๋“ค๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์ง€๋งŒ, ์ •ํ™•๋„ ๊ฐœ์„ ์„ ์œ„ํ•ด ๋ฌด์ˆ˜ํžˆ ๋งŽ์€ layer๋ฅผ ์Œ“์•„ ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ณต์žกํ•œ ๋ชจ๋ธ์ด ๋งŒ๋“ค์–ด ์ง„๋‹ค.

 

ML ๋ชจ๋ธ  

  • black box: XGBoost, Random Forest
    • XGBoost๋Š” Decision Tree์˜ Overfitting ๋‹จ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด Single Decision Tree๋ฅผ ์Œ“์€ ๊ฒƒ์ด๋‹ค.
  • white box: Decision Tree

XAI

๋ชจ๋ธ์˜ ์ •ํ™•๋„ ์ด์™ธ์˜ ์ถ”๊ฐ€์ ์ธ ์ •๋ณด๊ฐ€ ํ•„์š”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 

  • transparent models vs opaque models
  • model specific vs model agnostic

 

1. transparent models vs opaque models

  • transparent model(white box)- ๋‹จ์ˆœํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜
    • Linear Regression, Decision Tree, K-Nearest Neighbors, ๋“ฑ
  • opaque model(black box) - ๋ณต์žกํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜
    • Random Forest, Deep Neural Network, ๋“ฑ

 

2. model specific vs model agnostic

  • model specific: ๋ชจ๋ธ์˜ ๋ณธ์งˆ์ ์ธ ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ค๋ช…๋ ฅ์„ ์ œ๊ณตํ•˜๋Š”, ํŠน์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜์—๋งŒ ์ ์šฉ๊ฐ€๋Šฅํ•œ ๊ธฐ๋ฒ•
    • CAM(Class Activation Map): CNN(Convolutional Neural Network)๊ณ„์—ด์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ layer-level์˜ ์‹œ๊ฐํ™”
    •  Tree ensemble model์—์„œ ์‚ฌ์šฉ๋˜๋Š”: inTrees
    • Reinforcement Learning์„ ํ•ด์„ํ•˜๊ธฐ ์œ„ํ•œ: XRL(eXplainable Reinforcement Learning)
  • model agnostic 
    • ์ผ๋ฐ˜์ ์œผ๋กœ post-hocํ•˜๋ฉฐ, ์–ด๋–ค ์•Œ๊ณ ๋ฆฌ์ฆ˜์—๋„ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ 
    • ์‹ค์ œ ์ธ๊ธฐ ์žˆ๋Š” XAI ๊ธฐ๋ฒ•(PDP, ICE, LIME, SHAP ๋“ฑ) ์ƒ๋‹น์ˆ˜๊ฐ€ ์ด ๋ถ„๋ฅ˜์— ์†ํ•ฉ๋‹ˆ๋‹ค.
728x90